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ABSTRACT

Micropropagation is currently used to clone fruits, nuts and

vegetables and involves controlling the outgrowth in vitro of basal,

axillary or adventitious buds. Following clonal multiplication

shoots are divided and rooted. This process has greatly reduced

space and energy requirements in greenhouses and field nurseries

and has increased multiplication rates by greater than 20-fold for

some vegetatively-propagated crops and breeding lines. Cereal and

legume crops also can be cloned by tissue culture through somatic

embryogenesis. Somatic embryos can be used to produce "synthetic

seed", which can tolerate desiccation and storage and germinate

upon rehydration.

Synthetic seed of hybrid wheat, rice, soybean and other crops

could be produced in a controlled environment life support system

(CELSS). Thus yield advantages of hybrids over inbreds (10% to

20%) would be exploited without having to provide additional facil-

ities and energy for parental-line and hybrid seed nurseries. In

our laboratory media costs for producing i000 viable somatic embry-

os of wheat are about $ 0.12. This compares to $ 0.02 per i000 for

hybrid seed produced commercially and $ 0.40 per I000 when seeds

are produced in controlled environments with artificial lighting.

Mass and energy requirements for seed and propagule production in

a lunar or martian CELSS will be substantially reduced by

innovations in micropropagation and synthetic seed technology.

INTRODUCTION

The list of agricultural crops cloned in vitro for research,

breeding or commercial purposes has expanded rapidly in recent

years (Table I). The rationale for using tissue culture for

terrestrial applications includes rapid multiplication rates, low

energy and space requirements, and maintenance of specific genoty-

pes. This rationale will likely be of even greater importance in

an extraterrestrial controlled environment life support system
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Table i. Partial listing of crops that are cloned in vitro for

either research, breeding, hybrid seed production, commercial

production, or multiplication of virus-free nuclear stock.

Explant In vitro

Crop of choice system I Purpose 2 References

Cereals

Wheat Immature embryo SE GE, SV, SS i, 2
& inflorescence

Barley Immature embryo SE GE, SV 3

Maize Immature embryo SE GE, SV 4, 5

Rice Immature embryo SE GE, SV 6
& inflorescence

Sorghum Embryos, shoot SE GE, SV 7

tip

Lequmes

Soybean Immature embryo SE GE 8, 9, I0

Vegetables

Carrot Hypocotyl, meri- SE BR, SS
stem

Cassava meristem tip, AvB, SE VE, MNS,

mature embryo SS

Cocoyam shoot tip AvB VE, MNS

Hausa potato leaf AvB MNS

Taro shoot tip AvB VE, MNS

Potato Axillary bud, ABB, AvB VE, MNS,

petiole, tuber SV

disc, meristem

Sweet potato Meristem, tuber SE, AdB SS, MNS

disc, petiole

Sweet yam corm segment AdB MNS

Ii, 12, 13

14, 15

14

14

14

16, 20

14, 17, 18

14
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Table 1 (cont.).

Explant In vitro

Crop of choice system I Purpose z References

Veqetable

crops cont.

White yam Mature embryo, SE, AdB VE, CM, SS 14, 19

nodal cutting

Papaya Axillary bud AdB CM 20

Artichoke Apical bud ABB, AdB CM 21

Asparagus Basal bud ABB, AdB CM, MNS 20, 22

Celery Immature petiole SE SV, SS 23

Lettuce Leaf SE SV 24

Mustard Immature embryo SE SS 25

Cucumber Leaf SE SS 26

Sugar and

oil crops

Sugarcane Meristem, leaf SE SV, SS 27, 28

Sugarbeet Lateral bud, pe- ABB, AdB MB 29
tiole

Oil palm Embryo, leaf SE, AdB MB 30

Fruit and

nut crops

Tomato Embryo, leaf, SE, AvB GE, SV, 31, 32

hypocotyl MB, SS

Strawberry Immature embryo, SE, ABB, VE, SS, CM 16, 22, 33,

meristem AvB SV, MPN 34, 35

Raspberry Apical and axil- ABB, AvB VE, CM 22, 35

lary bud

Blackberry Root, Apical & ABB, AvB VE, CM 22, 35, 36

axillary bud

Blueberry Axillary bud ABB, AvB CM 22, 35
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Table 1 (cont.).

Crop

Explant In vitro

of choice system I Purpose z References

Fruit and nut

crops cont.

Peach &

nectarine

Apricot

Apple and

crabapple

Cherry

Plum, prune

Pineapple

Banana

Grape

Date palm

Pecan walnut

chestnut

filbert

Shoot tip AvB CM 37

Shoot tip AvB CM 37

Bud AvB CM 37, 38

Root AvB CM 37, 39

Shoot tip AvB CM 37

Shoot tip & AvB CM, MNS 14, 16, 40

axillary bud

Axillary bud, AvB CM 14, 16, 41
corm

Anther, ovary, SE, ABB, SS, CM 35, 42, 43
node AvB

Lateral bud SE, AvB SS, CM 44

Shoot tip AvB CM 37

Spice and

fiber crops

Caraway hypocotyl SE SS 45

Cacao Immature embryo SE SS 46

Coffee Leaf SE, AvB, SS, CM 47
ABB

Cotton Cotyledon SE BR, GE 48

IABB, Axillary or basis buds; AvB, adventitious buds; SE, somatic

embryogenesis

2BR, basic research; CM, commercial micropropagation; GE, genetic

engineering; MB, micropropagation for breeding purposes; MNS,

micropropagation for nuclear stock; SS, synthetic seed research;

SV, somaclonal variation; VE, virus eradication
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(CELSS). The purpose of this article is to summarize the commer-

cial use of in vitro cloning with todays crops and to describe areas

of research important to the application of in vitro cloning for

food production in a CELSS.

TISSUE CULTURE AND CROP PRODUCTION

Plant regeneration in vitro occurs through one of three devel-

opmentally-distinct processes: branching from normally-formed

basal or axillary buds, branching from adventitiously-formed buds,

or somatic embryogenesis. Cloning from basal, axillary or adventi-

tious buds involves cuttings from vegetative tissues and is thus

a form of vegetative propagation. The term "micropropagation" is

reserved for these processes. In contrast multiplication by soma-

tic embryogenesis is not a vegetative process but involves the

formation of entirely new plants, usually of single or near single

cell origin, without the cutting and rooting procedures associated

with micropropagation. Procedures for cloning horticultural,

agricultural or forestry crops by somatic embryogenesis are still

largely in a developmental stage.

Shoot formation (or branching) from preexistent basal or

axillary buds occurs when dormancy or quiescence of buds is re-

leased in vitro by hormone treatments. Tissues generally do not

dedifferentiate and there is no callus intermediate. Hence this

process is considered to be genetically stable. Shoots produced

are cut into pieces that contain axillary or basal nodes and the

process is repeated. The multiplication potential is calculated
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by the formula x=n c, where x = the total number of plants produced,

n = the average number of propagules produced per explant during

each cycle of multiplication, and c = the number of multiplication

cycles. Generally values of n range from 5 to i0 and multiplica-

tion cycles range from 3 to 6 weeks in duration.

In the second process adventitious buds form directly from

dedifferentiated cells of the explant or from cells of a callus

intermediate. Genetic and epigenetic stability are more readily

compromised in this process, which may cause somaclonal variation

(49), especially when a callus intermediate is involved. The

multiplication procedure is similar to that described above. While

multiplication cycles are typically of a long duration (4 to I0

weeks), the n value from the formula listed above can be much

higher (50 to I00), which results in a higher overall multiplica-

tion rate. Most micropropagation systems involve shoot formation

from a mixture of both preexistent and adventitious buds. Rates

of multiplication by tissue culture are often far superior to those

obtained by conventional procedures (Table 2).

Micropropagation is important not only for commercial produc-

tion but for cloning male sterile, gynoecious or polyploid paren-

tal lines used to produce hybrid seed. For example male sterility

is a homozygous recessive trait in tomatoes. Multiplication of

these parental lines by seed requires use of heterozygotes as

pollinators. Segregation from the required crosses results in an

undesirable i:i ratio of male sterile to male fertile plants. The

latter plants must be manually removed from hybrid seed production

nurseries upon their identification at flowering. Micropropagation
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Table 2. Multiplication rates of selected crops by micropropaga-

tion and conventional propagation.

Propagules

Crop produced I In vitro Conventional References

.......... years

Potato 125 0.2 2 16

Pineapple 40-380 1.0 5-9 40

Stone fruit 9-35 0.1 1-3 37

Strawberry 20 0.I 1 22

INumber of propagules produced is squared or cubed when time in-

vested (iN vitro or conventional) is doubled or tripled.

of these male sterile lines offers an attractive alternative.

Similar situations exist for asparagus, cucumber, broccoli and

triploid hybrids such as watermelon and sugar beets (see 50 for a

review). In vitro procedures are being developed not only for

clonal propagation but for somaclonal variation, genetic engineer-

ing or other research or breeding purposes (Table I).

SEED AND PROPAGULE PRODUCTION IN A CEILS

The operation of a CELSS will be limited by availability of

human resources. Because of this limitation crops selected for a

CELSS will be restricted to those crops where sowing, crop growth,

harvesting, and seed or propagule processing can be automated. The

CELSS Initial Reference Configuration (Nov. 1988) identifies a

plant growth facility, for production of crops, seeds and propa-
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gules, and a storage facility, where the cleaning and storage of

seeds and propagules will occur. Most procedures associated with

these facilities lend themselves to current automation technology.

Micropropagation. Any system proposed to improve or streamline

conventional procedures of crop production in a CELSS will need to

be automated. On earth, where human resources are plentiful,

micropropagation is beginning to replace conventional procedures

for seed and propagule production (Table I). Labor, energy and/or

space considerations are driving private-sector decisions in this

direction. Costs of skilled labor for micropropagation are becom-

ing cheaper than the greenhouse, nursery and labor costs of conven-

tional propagation. In contrast the human labor variable in a

CELSS will be heavily weighted, and micropropagation will need to

meet a higher level of automation than is currently employed on

earth.

Automating micropropagation will be complicated. Micropropa-

gation usually involves at least one mechanical cutting for every

propagule produced. Cuttings often need to be made in precise

locations to assure proliferation of additional shoots. Further-

more micropropagated tissues are sensitive to desiccation and

mechanical injury. Thus machinery designed to handle these opera-

tions must "visualize", to a greater or lesser extent, the tissue

to be propagated, make decisions based on "visual" images, and

manipulate and slice tissues of varying sizes in a delicate manner.

Finally nearly all of these operations must be conducted asepti-

cally. Progress in tissue culture automation is being made (51)
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but equipment designs appropriate for a CELSS probably will not be

available for some time. An automated micropropagation system

could be used in a large-scale CELSS to clone potato, asparagus,

cucumber, sugar beet, yam, plantain, papaya, pineapple, banana,

raspberry, strawberry, grape, filbert, coffee and others (Table I).

In addition to being automated, innovations for increasing

yields in a CELSS must also be energy efficient. For example

nurseries for parental-line and hybrid seed production could be

incorporated into the plant growth facility. This would permit

the exploitation of hybrid vigor, which often means a 10% to 20%

increase in yield. However, even with automation, yield advantages

simply might not justify the added mass and energy required to

maintain parental and hybrid seed nurseries. In this respect a

combined approach where an automated micropropagation system is

used to eliminate some of the parental-line nurseries may justify

production of hybrid seed (Fig. i). Currently crops for which this

strategy may be of value include broccoli, cauliflower, cucumber,

tomato, watermelon and sugar beets (Table i).

Synthetic seed production. Somatic embryogenesis is the highest

expression of cellular totipotency in plant tissue cultures and

offers the greatest potential in terms of mass cloning and automa-

tion. With carrot as many as 5000 uniform somatic embryos can be

obtained within 14 days from 1 ml of packed cells of a cell suspen-

sion (52). Unfortunately rates of production of somatic embryos

of other crops are generally much lower and, even in the carrot

system, most somatic embryos are abnormal and fail to germinate.
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Figure i. Seed and propagule production in a CELSS, current capa-

bilities . Currently tissue culture could reduce space and energy

requirements for production of propagules of many crops (Table i).
Most seed and propagules would be produced conventionally by the

lower loop, nursery to seed mill to storage facility to nursery•

NURSERY

• Hybrid seed
production

SEED MILL

" Cleaning

• Packaging

J

i
STORAG{ FACILITY

. Natural and synthetic
seed

• Micropropagated plantIets

TISSUE CULTURE FACILITY

• Micropropagation
Synthetic seed

production

NURSERY

• Food

production

I FOOD PROCESSING I

Nevertheless procedures for selectively multiplying highly totipo-

tent "embryogenic" cells and inducing these to form somatic embryos

are being improved for numerous crops (Table i).

Research efforts are now focusing not only on inducing soma-

tic embryogenesis but on defining conditions that cause normal

embryo development• Recently procedures were developed for pro-

ducing somatic embryos of carrot without use of an exogenous aux-

in. Embryos so produced are more normal and can be encapsulated

in calcium alginate for "synthetic seed" production• Germination
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rates are as high as 50 % (13). Synthetic seed technology and its

future application have recently been reviewed and discussed by

Redenbaugh et al. (53, 54).

A goal in our laboratory is to understand and increase the

production of embryogenic cells in wheat tissue cultures. We have

observed increases by specifically altering the type of media and

auxin used (55, 56, 57), by reducing oxygen availability to tissues

(i), and by pretreatments that alter endogenous hormone levels

prior to tissue culture (58, 59). We are also exposing embryogenic

cells to environments that simulate in ovuTo conditions. Partial

simulation of in OVUTO oxygen, hormone, and desiccation environments

has increased numbers of somatic embryos produced by six-fold (3600

per gm of callus) and have increased germinability of somatic

embryos from i0 % to 40 % (i, 60).

Synthetic seed technology may be perfected by the time a lunar

CELSS is constructed (approx. 2015). This technology will probably

involve 3 to 4 stages. The first stage will occur in suspension

culture where embryogenic cells will be mass produced. By defini-

tion such cells are capable of immediately beginning to form soma-

tic embryos if exposed to appropriate conditions. However, during

the first stage, conditions will remain inappropriate for both

embryo formation and for multiplication of nonembryogenic cells.

Proliferation of embryogenic cells will be instantaneously

terminated in the second stage. This will be followed by a syn-

chronous initiation of embryogenesis. Conditions appropriate for

embryo initiation and early formation may not be satisfactory for
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embryo maturation (i, 60, 61, 62). Thus a third stage, for embryo

maturation and desiccation, will probably be required. Somatic

embryos of albuminous species (food reserves of seeds associated

with endosperm) will require encapsulation with an artificial

endosperm (53, 54). Encapsulation might not be required for soma-

tic embryos of legume and various other dicotyledonous crops, where

food reserves are primarily stored in the cotyledons (63).

Costs of synthetic seed: what to expect. Replacement of true seed

with synthetic seed in a lunar CELSS (Fig. 2) could be cost effec-

tive. Yields would be higher because harvested material would not

be used as seed (3 % to 5 % savings in yield) and hybrids (i0 % to

20 % yield advantage) could be used without the mass and energy

drains of conventional parental-line and hybrid seed nurseries.

Furthermore this technology could be used with nearly all crops.

It is difficult to predict what the costs of synthetic seed

will be 25 years from now. However the economics of synthetic seed

will certainly be more attractive in a lunar CELSS than on earth.

This is because production of true seed in a lunar CELSS will

require supplemental lighting for from 50 % to I00 % of the entire

production cycle. In contrast somatic embryogenesis requires

little or no light.

On earth pure line seed of wheat is purchased for about $ 0.01

per i000 while hybrid seed is about twice this much. The energy

cost of producing i000 pure line wheat seed in a controlled envi-

ronment with i00 % supplemental lighting is 40-fold higher, approx.
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Figure 2. Seed and propagule production in a CELSS, future capa-

bilities. By 2015 tissue culture may nearly eliminate space and
energy requirements for conventional production of seeds and propa-

gules• Vegetative propagules and synthetic hybrid seed (of numer-

ous crops) would be produced through the upright loop, nursery to
tissue culture facility to storage facility to nursery.

I •

STORAGE FACILITY

Synthetic seed
Micropropagated plantlets

I FOOD PROCESSING I

TISSUE CULTURE FACILITY

Micropropagation

• Synthetic seed

oduction

NURSERY

• Food

production

$ 0.40 (calculations assume a $ 0.05 per KWH energy cost and cur-

rent production levels at Utah State University, 64). In our

laboratory somatic embryos of wheat are produced in the dark at

ambient temperatures with a media cost per I000 viable embryos of

$ 0.12 (calculated from production and germination data in i).

Energy costs are negligible.

If the costs of media and energy rise proportionately when

produced in a CELSS, then true seed will remain approx. 4x more

expensive. Furthermore production of i000 viable somatic embryos

requires about 75 cm 3. The area required to produce I000 true seed
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in a controlled environment is about 200-fold greater, or 15,000

cm 3. Clearly if somatic embryogenesis can be perfected and automa-

ted, then substantial savings in energy and space should be achiev-

able. Automated systems of micropropagating potato, yam, sweet

potato, asparagus and others (Table i) may also be cost effective

in terms of the mass and energy constraints of a lunar or martian

CELSS.

Our cost analysis of wheat synthetic seed assumes use of

current somatic embryogenesis technology, which is far from op-

timal. In our system callus is produced on semi-solid medium and

nearly 50 % is nonembryogenic. Another problem is a structural

interconnection of embryos that reduces germination frequencies

and requires that plantlets be separated manually. Our goal is to

produce fine suspensions of uniformly-embryogenic cells that will

synchronously form singular somatic embryos. Such a system is

being approached with carrot (ii) where the cost of media per i000

somatic embryos is approx. $ 0.01 (based on 5000 somatic embryos

per ml packed cells, a 5:1 ratio of embryogenic suspension to

packed cells, and a 40:1 ratio of embryo induction medium to packed

cells). Development of such a system for wheat could reduce media

costs per i000 somatic embryos to about $ 0.02.

CONCLUSIONS AND RECOMMENDATIONS

Micropropagation systems are becoming more cost effective than

conventional propagation systems, particularly for certain vegeta-

ble and fruit crops and for male-sterile, gynoecious or polyploid

parental lines used to produce hybrid seed (Table I). In a lunar
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CELSSconventional propagation will require high light intensities

from artificial lights. In contrast micropropagation requires low

intensities and can be accomplished in a much smaller area. Such

variables could makeautomated systems of micropropagation attrac-

tive for numerous crops.

By the time a lunar CELSS is constructed (approx. 2015),

private industry may have replaced many micropropagation and true

seed systems with synthetic seed, particularly for high cash-value

crops. It is doubtful that private industry will apply these

innovations to major field crops, where the cost of natural seed

is extremely low. However energy and mass limitations in a lunar

CELSSmay present a very different scenario. Advantages of produc-

ing synthetic seed of wheat over true seed in a CELSScould include

a reduction in cost of as high as a 95 %, a reduction in required

space of as high as 99.5 %, yield increases of 3 % to 5 % due to

harvested seed not being used in the sowing of subsequent crops,

and yield increases of i0 % to 20 % due to the use of hybrids.

Both micropropagation and synthetic seed technology should receive

further investigation in terms of providing mass and energy savings

in a future CELSS.
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